DESIGN AND IMPLEMENTATION OF FLC FOR INTERLINE UNIFIED POWER QUALITY CONDITIONER

K. LAVANYA
P.G. Scholar, Dept Of Eee, Sri Indu College Of Engineering

J. RAKESH SHARAN
Asst. Professor, Dept Of Eee, Sri Indu College Of Engineering

M. SHIVA KUMAR
Hod, Dept Of Eee, Sri Indu College Of Engineering

ABSTRACT-This paper proposes a new connection for a unified power quality conditioner (UPQC) to improve the power quality of two feeders in a distribution system. The interline custom power devices named Interline Unified Power Quality Conditioner (IUPQC) is improved for various power quality disturbances and modeled in MATLAB/SIMULINK by using fuzzy logic controller. The developed topology can be used for simultaneous compensation of voltage and current imperfections in a multibus/multi-feeder system.

The proposed IUPQC is designed for medium voltage level (11 kV) and effective Enhanced Phase Locked Loop (EPLL) with fuzzy based control technique is used to detect and extract the PQ disturbances. The performance of Series Compensator of IUPQC is evaluated through extensive simulations for mitigating unbalanced voltage sags with phase jumps and interruption.

The performance of Shunt Compensator of IUPQC is also tested for harmonic and reactive power compensation that are not investigated before in literature. It is verified that IUPQC which is connected to two feeders, can compensate current and voltage distortions successfully in these feeders according to the results obtained using MATLAB/SIMULINK.

INTRODUCTION

Power quality has become an important factor in power systems, for consumer and household appliances with proliferation of various electric/electronic equipment and computer systems. The main causes of a poor power quality are harmonic currents, poor power factor, supply voltage variations, etc. In recent years the demand for the quality of electric power has been increased rapidly. Power quality problems have received a great attention nowadays because of their impacts on both utilities and customers. Voltage sag, swell, momentary interruption, under voltages, over voltages, noise and harmonics are the most common power quality disturbances.

In recent years, the use of nonlinear and electrically switched devices that draw non-sinusoidal currents in to the power systems have increased in utility and thus contribute to the degradation of power quality.

In recent studies, the concept of the multiconverter based Interline Custom Power Conditioner devices are introduced. In an interline custom power device, two or more VSCs are connected back-to-back through a common dc capacitor to two neighboring feeders. These devices can be of series-series, shunt-shunt or series-shunt type [5]. The main advantage of multi-feeder devices is that if any power quality problem occurs in one feeder, other adjacent feeders supplies power for compensating power quality problem. Therefore the multi-feeder PQ devices assure superior performance than single feeder PQ devices.

Unified Power Quality Conditioner (UPQC) consists of two IGBT based Voltage source converters (VSC), one shunt and one series cascaded by a common DC bus. The shunt converter is connected in parallel to the load. It provides VAR support to the load and supply harmonic currents. Whenever the supply voltage undergoes sag then series converter injects suitable voltage with supply[2]. Thus UPQC improves the power quality by preventing load current harmonics and by correcting the input power factor.

This paper presents, a new concept namely the Interline Unified Power Quality Conditioner (IUPQC) has been proposed in [3]. This concept can also be considered as the implementation of known Unified Power Quality Conditioner (UPQC) structure in two different feeders. The purpose of IUPQC is to regulate the bus voltage of one of the feeders, while regulating the voltage across a sensitive load in the other feeder. Multiconverter United Power Quality Conditioner (MC-UPQC) is the most recent interline custom power device which is proposed in [1]. In the basic configuration of MC-UPQC, one shunt and two series VSC exist. The MC-UPQC system can be applied to adjacent feeders to compensate for supply voltage and load current imperfections on the main feeder and full compensation of supply voltage imperfections on the other feeder [1].

This study mainly focuses on modeling of IUPQC in MATLAB/SIMULINK simulation program. The proposed IUPQC is designed for medium voltage level (11 kV) and is developed for simultaneous compensation of voltage and current distortions in a multi-feeder system. An effective EPLL based control technique is used for IUPQC to
detect and extract the PQ disturbances. The performance of proposed IUPQC system is evaluated through extensive case studies for mitigating harmonics, unbalanced voltage sags with phase jumps and interruption. The paper is organized in the following manner: System description, power circuit configuration and control strategy of proposed IUPQC are presented in section 2. Simulation results for different case studies are provided and discussed in section 3. Finally, conclusions of the study are given in section 4.

II. DESIGN OF IUPQC

Description of the proposed system

The IUPQC shown in Fig.1 consists of two VSCs (VSC-1 and VSC-2) that are connected back to back through a common energy storage dc capacitor. As shown in this figure, the feeder impedances are denoted by \((R_{s1}, L_{s1})\) and \((R_{s2}, L_{s2})\). It can be seen that two feeders Feeder-1 and Feeder-2 are connected to two different substations that supply the system loads \(L_1\) and \(L_2\). The IUPQC is connected to two buses BUS1 and BUS2 with voltages \(u_{bus1}\) and \(u_{bus2}\). The supply voltages are denoted by \(u_{s1}\) and \(u_{s2}\) while load voltages are denoted by \(u_{l1}\) and \(u_{l2}\). Finally, two feeder currents are denoted by \(i_{s1}\) and \(i_{s2}\) while load currents are denoted by \(i_{l1}\) and \(i_{l2}\).

Configuration of Power Circuit

The structure of the IUPQC connected to a distribution system is shown in Fig. 1 consists of two VSCs (VSC1 and VSC2) that are connected back to back through a common dc capacitor (Cdc). In this topology VSC1 is connected in shunt to Feeder-1 while the VSC2 is connected in series with Feeder-2. The components of shunt compensator power circuit are DC link capacitor, three-phase inverter circuit and smoothing inductor (Lf,apf) as shown in Fig. 2.

![Figure 2. The schematic structure of Shunt VSC (VSC1)](image)

Three-phase three-wire voltage source inverter topology is used as shunt compensator in this study. The smoothing inductors establish a link between VSC1 and power system. Smoothing inductors convert VSC voltage to current and shunt compensator to act as a current source. DC capacitor (energy storage unit) supplies required power for harmonic compensation of load current during operation. DC link voltage must be higher than the peak value of the utility voltage; otherwise the generated compensation currents cannot be injected to the power system. The shunt compensator must be connected to 11 kV level via transformer because of the limits of power semiconductor devices in VSC.

The components of series compensator power circuit are DC link capacitor, inverter circuit, and inverter side filter and injection transformer as shown in Fig. 3.

![Figure 3. The schematic structure of Series VSC (VSC2)](image)
Mathematically, the frequency deviation, $\Delta wt(t)$; and the phase angle $\theta(t)$ of $y(t)$.

III. CONTROL SCHEME

A. EPLL

The IUPQC consist of Shunt and Series VSC which are controlled independently. The switching control strategy for series VSC and the shunt VSC are selected to be sinusoidal pulsewidth modulation (PWM) voltage control and hysteresis current control, respectively. In this study, simple and effective control algorithm is used to detect and extract the PQ disturbances. The algorithm is based on the nonlinear adaptive filter named Enhanced Phase Locked Loop (EPLL) presented in [14]. The reason of preferring EPLL is that it has simple structure than most preferred time domain method, and it has fast and accurate response with changing load conditions.

The EPLL is inherently adaptive and follows variations in amplitude, phase angle and frequency of the input signal. The EPLL is capable of accurately estimating the fundamental component of a polluted signal. The structure of the EPLL shown in Fig. 4, is simple and this makes it suitable for real-time embedded applications for software or hardware implementation [15]. The EPLL is formed from three main parts as shown in Fig. 4. These main parts are phase detector (PD), low pass filter (LPF) and voltage controlled oscillator (VCO). The EPLL receives the input signal $u(t)$ and provides an on-line estimate of the following signals:

- The synchronized fundamental component, $y(t)$;
- The amplitude, $A(t)$ of $y(t)$;
- The difference of input and synchronized fundamental component, $e(t)$;
- The frequency deviation, $\Delta wt(t)$;
- The phase angle $\theta(t)$ of $y(t)$.

![Figure 4. The structure of EPLL and its parameters](image)

The controller algorithm of shunt compensator is formed from the harmonic current extraction, hysteresis current controller, DC link voltage controller and reactive power control as shown in Fig. 5.

![Figure 5. The control algorithm of Shunt Compensator](image)
When the distorted current or voltage signal is applied to EPLL, the harmonics and interharmonics of distorted signal (I_{har}) can be obtained from the $e(t)$ signal of EPLL. DC link voltage control is achieved by using Fuzzy controller. The input of the Fuzzy controller is the error between the actual capacitor voltage V_{cap} and its reference value $V_{cap,ref}$. In order to keep DC link voltage at a constant level, shunt compensator must draw active power by drawing current (I_{cap}) in phase with line voltage. To draw a current in the same phase with system voltage (V_{load}) must be known. This can be achieved by using EPLL. With using phase of system voltage, DC link control reference current signal is created by multiplying the Fuzzy controller output and sine wave created by phase information of system voltage. The block diagram of reactive power control used in control method of Shunt Compensator module (VSC1) is shown in Fig. 6 [15]. Two identical EPLL units are used for voltage and current signals. The top portion of the unit is used for voltage and the bottom portion is used for current signal processing. The link between the two parts is to calculate the fundamental reactive current component (I_{reac}).

Figure 6. Block diagram of the proposed reactive-current extraction unit

Figure 7. The control algorithm of Series compensator

The main aim of the series VSC (VSC2) is to mitigate voltage sag/swell and interruption in Feeder-2. The control system of series compensator consists of sag/swell detection, reference voltage extraction and gate signal generation as shown in Fig. 7.

Simple and effective control algorithm is proposed for both sag/swell detection and reference voltage generation in this paper. The algorithm is based on the EPLL that extracts and directly provides the amplitude $A(t)$, phase angle $\theta(t)$ and fundamental component $A(t) \cos \theta(t)$ of the input signal for each phase independently. With the proposed method, the controller is able to detect balanced, unbalanced and single phase voltage sags/swells without an error. In this method, three EPLLs are used to track each of the three phases.

In the EPLL, the measured phase supply voltages are converted to per unit value. $A(t)$ gives the amplitude of the tracked signal $u(t)$. If there is no sag or swell, $A(t)$ signal is obtained as continuous 1 pu. By subtracting the $A(t)$ signal from the ideal voltage magnitude (1 pu), the voltage sag/swell depth (S_{depth}) can be detected. The comparison of this value with the limit value of 10% (0.1 pu) gives information whether a fault occurred or not [16]. The voltage sag/swell detection based on EPLL method is presented in Fig. 8.

Figure 8. Block diagram of proposed EPLL based sag detection method

Reference voltage V_{error} is calculated according to voltage injection strategy by using magnitude $A(t)$, the output $y(t)$ and phase $\theta(t)$ signals extracted with EPLL. In this study, Pre-Sag Compensation method is used as voltage injection strategy. Pre-Sag Compensation (PSC) method tracks supply voltage continuously and if it detects any disturbances in supply voltage it will inject the difference voltage ($V_{error, presag}$) between the sag or voltage at point common coupling (PCC) and pre-fault condition, so that the load voltage can be restored back to the pre-fault condition.

If sag is accompanied by a phase jump, PSC method offers better performance by compensating voltage sags in the both phase angle and amplitude for sensitive loads [17]. Other voltage injection strategies such as in-phase, phase-advance and minimum energy injection compensation methods may not prevent the phase jump of the load voltage at the starting and ending instants of the sag compensation period [18].

PWM switching method is used as gate signal generation for series converter. The switching pulses are generated by comparing the reference voltage compensation signal V_{error} with a fixed frequency carrier triangular wave.
B. FUZZY LOGIC CONTROL:

In FLC, basic control action is determined by a set of linguistic rules. These rules are determined by the system. Since the numerical variables are converted into linguistic variables, mathematical modeling of the system is not required in FC. The FLC comprises of three parts: fuzzification, interference engine and defuzzification. The FC is characterized as; i. Seven fuzzy sets for each input and output. ii. Triangular membership functions for simplicity. iii. Fuzzification using continuous universe of discourse. iv. Implication using Mamdani’s “min” operator. v. Defuzzification using the “height” method.

Fuzzification

Membership function values are assigned to the linguistic variables, using seven fuzzy subsets: NB (Negative Big), NM (Negative Medium), NS (Negative Small), ZE (Zero), PS (Positive Small), PM (Positive Medium) and PB (Positive Big). The partition of fuzzy subsets and the shape of membership function adapt the shape up to appropriate system. The value of input error $E(k)$ and change in error $CE(k)$ are normalized by an input scaling factor [11] and [12].

<table>
<thead>
<tr>
<th>E</th>
<th>ΔE</th>
<th>NB</th>
<th>NM</th>
<th>NS</th>
<th>ZE</th>
<th>PS</th>
<th>PM</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
</tr>
<tr>
<td>NM</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>NS</td>
<td>NB</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PM</td>
</tr>
<tr>
<td>ZE</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
</tr>
<tr>
<td>PS</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
</tr>
<tr>
<td>PM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
</tr>
<tr>
<td>PB</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
</tr>
</tbody>
</table>

scaling factor [11] and [12].

Table 1. Fuzzy Rules

In this system the input scaling factor has been designed such that input values are between -1 and +1. The triangular shape of the membership function of this arrangement presumes that for any particular input there is only one dominant fuzzy subset. The input error $E(k)$ for the FLC is given as

$$E(k) = \frac{P_{ph(k)} - P_{ph(k-1)}}{V_{ph(k)} - V_{ph(k-1)}}$$

$$CE(k) = E(k) - E(k - 1)$$

Interference Method

Several composition methods such as Max–Min and Max-Dot have been proposed in the literature. In this paper Min method is used. The output membership function of each rule is given by the minimum operator and maximum operator. Table 1 shows rule base of the FLC.

Defuzzification

As a plant usually requires a non-fuzzy value of control, a defuzzification stage is needed. To compute the output of the FLC, “height” method is used and the FLC output modifies the control output.

Further, the output of FLC controls the switch in the inverter. In order to control these parameters, they are sensed and compared with the reference values. To achieve this, the membership functions of FC are: error, change in error and output as shown in Figs. (a), (b). In the present work, for fuzzification, non-uniform fuzzifier has been used. If the exact values of error and change in error are small, they are divided conversely and if the values are large, they are divided coarsely.

$$u = -[\alpha E + (1 - \alpha) \cdot c]$$

Where α is self-adjustable factor which can regulate the whole operation. E is the error of the system, C is the change in error and u is the control variable. A large value of error E indicates that given system is not in the balanced state. If the system is unbalanced, the controller should enlarge its control variables to balance the system as early as possible. One the other hand, small value of the error E indicates that the system is near to balanced state. Overshoot plays an important role in the system stability.
Less overshoot is required for system stability and in restraining oscillations. C in (12) plays an important role, while the role of E is diminished. The optimization is done by α. The set of FC rules is made using Fig. 4 is given in Table 1.

IV. SIMULATION RESULTS

The proposed IUPQC and its control schemes are tested through extensive case study simulations. In this section, simulation results obtained by MATLAB/SIMULINK are presented, and the performance of the proposed IUPQC is analyzed. The system parameters of IUPQC system are provided. EPLL parameters are given in Table 2.

TABLE II. EPLL PARAMETERS

| Harmonic Distortion on Feeder-1 |

This case presents how VSC1 overcomes the load current harmonics with the proposed control algorithms. A three phase diode bridge rectifier is used as a harmonic current producing load. The nonlinear load contains lower and higher order harmonics with a total value of 25.08% THD before compensation. VSC1 eliminates the load current harmonics by injecting current that cancel harmonic currents of nonlinear load as shown in Fig. 10. The waveforms indicate the nonlinear load current (iLL), its corresponding compensation current injected by VSC1 (ipf), compensated Feeder-I current (iS1) and the dc link capacitor voltage (Vcap) of Phase-A respectively. The results show that a successful reduction in harmonics of the nonlinear load current (iLL) is obtained. A nonlinear load current with 25.08% THD is reduced to less than 5%. The PI controlled dc-link capacitor voltage is nearly kept at 1.7 kV.

![Figure 10. Nonlinear load current, compensating current, Feeder1 current and dc link capacitor voltage for Case A](image1)

Voltage Sag on Feeder-2

In this case, single line-to-ground unbalanced fault is considered, since it is most likely to occur in 70% of among all voltage sags in a distribution system [16]. 35% Single line-to-ground fault with 47.64° phase angle jump is investigated which occurs on Phase-A of BUS2 voltage between 0.3 s < t < 0.5 s. The sensitive/critical load (L2) voltage is not affected by voltage sag with the help of series compensator (VSC2). Fig. 11 shows the BUS2 voltage (ubus2), series compensating voltage (uSE), L2 load voltage (ul2) and dc link capacitor voltage (Vcap).

Upstream Fault on Feeder-2

In this case study, the performance of VSC2 for upstream fault (interruption) mitigation on Feeder-2 is investigated. Single phase (L-G) interruption occurs on Phase-A of BUS2 voltage between 0.6 s < t < 0.8 s, and 25.27° phase angle jump occurs during the interruption. The sensitive/critical load (L2) voltage is not affected by voltage sag with the help of series compensator (VSC2). Fig. 12 shows the BUS2 voltage (ubus2), series compensating voltage (uSE) and L2 load voltage (ul2) and the dc link capacitor voltage (Vcap).

Table 2. System parameters

<table>
<thead>
<tr>
<th>System parameters</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Source (uL1)</td>
<td>11 kV (L-L, rms), phase angle 0°</td>
</tr>
<tr>
<td>Voltage Source (uL2)</td>
<td>11 kV (L-L, rms), phase angle 0°</td>
</tr>
<tr>
<td>Feeder-1 (R_L1 + j2πfL_L1)</td>
<td>Impedance:0.0015+j0.0785Ω</td>
</tr>
<tr>
<td>Feeder-2 (R_L2 + j2πfL_L2)</td>
<td>Impedance:0.0015+j0.0785Ω</td>
</tr>
<tr>
<td>Nonlinear load (L1)</td>
<td>A three-phase diode bridge rectifier that supplies a load of 100+125.66Ω</td>
</tr>
<tr>
<td>Sensitive/Critical Load (L2)</td>
<td>150.0+j23.56Ω</td>
</tr>
<tr>
<td>DC Link Capacitor (C_dC)</td>
<td>40 mF</td>
</tr>
<tr>
<td>DC Link Capacitor Voltage</td>
<td>1700 V</td>
</tr>
<tr>
<td>Coupling Transformer TR1</td>
<td>2 MVA, 11/1kV Δ/Y, Uk:5%</td>
</tr>
<tr>
<td>Injection Transformer TR2</td>
<td>2 MVA, 12.8/0.8 kV, 10% Leakage reactance</td>
</tr>
<tr>
<td>Power Transformer TR3</td>
<td>2 MVA, 11/6.3 kV Δ/Δ, Uk:10%</td>
</tr>
</tbody>
</table>
V. CONCLUSION

This paper proposes an improved IUPQC topology for simultaneous compensation of voltage and current in adjacent feeders. An effective EPLL with fuzzy-based control technique is used for IUPQC to detect and extract the PQ disturbances in multi-feeder systems. Each phase of Series and Shunt Compensator is investigated independently with EPLL-based fuzzy controller. The performance of the proposed IUPQC system is evaluated through extensive simulations for mitigating harmonics, unbalanced voltage sags with phase jumps and interruptions. The results of simulations show its effectiveness in handling PQ issues, so that smooth and clean power flow to the loads.

REFERENCES

K. LAVANYA received the B.Tech degree in Sri Venkateswara Engg College, Suryapet, Andhra Pradesh, India in 2011. Currently, he is pursuing the M.Tech (Electrical Power Engineering) degree at Sri Indu College of Engineering, Sheriguda, Andhra Pradesh, India.

J. RAJKESH SHARAN received the B.Tech degree in Asifa college of engg&tech, Hyderabad, Andhra Pradesh, India in 2007, and M.Tech degrees in electrical engineering from the Bharat college of engg&tech, Sheriguda, Andhra Pradesh, India in 2011.

M. SHIVA KUMAR received B.Tech degree in SIT in ELECTRONICS ENGINEERING from BANGALORE UNIVERSITY, TUMKUR, INDIA in 1986 and M.tech (COMPUTER SCIENCE ENGINEERING) in Dept. OF CSE from JNTUCE in 2004 at, ANANTHAPUR, INDIA.