ANFIS BASED RECTIFIER LOAD ANALYSIS FOR ELECTRIC VEHICLE WIRELESS CHARGING SYSTEM

Dondapati Anna Mani (M.Tech) Dr. Sambasiva Rao Naraboina M.Tech, Ph.D, Hod(EEE), Professor
NRI Institute Of Technology, Pothavarpadu, Agiripalli, Krishna, Andhra Pradesh. INDIA.
annamaniabc@gmail.com nsraohodeee@gmail.com

ABSTRACT
This paper presents the analysis of rectifier load used for electric vehicle (EV) wireless charging system, as well as its applications on compensation network design and system load estimation. Firstly, a rectifier load model is established to get its equivalent input impedance, which contains both resistance and inductance components, and can be independently calculated through the parameters of the rectifier circuit. Then, a compensation network design method is proposed, based on the rectifier load analysis. Furthermore, a secondary side load estimation method and a primary side load estimation method are put forward, which adopt only measured voltages and consider the influence of the rectifier load. Finally, an EV wireless charging prototype is developed, and experimental results have proved that the rectifier equivalent load can be correctly calculated on conditions of different system load resistances, rectifier input inductances, DC voltages, and mutual-inductances. The experiments also show that rectifier load equivalent inductance will impact system performances, and the proposed methods have good accuracy and robustness in the cases of system parameter variations. Adaptive neuro-fuzzy inference systems (ANFIS) and artificial neural networks (ANN) are independently employed for the estimation process. Training data for both paradigms are extracted from analytical solution of the EV mathematical model. Comparison of the testing results signifies that ANN outperforms ANFIS in estimating the required parameters.

I. INTRODUCTION
Electric vehicle (EV) wireless charging system (WCS) has the advantages of convenience, space-saving, etc. So, it has attracted much attention. In recent years, working principle, operation characteristics, system design, and control method of both stationary and dynamic wireless EV charging systems have been studied and applied to some demonstrations [1,2]. In applications of EV wireless charging, rectifier and output filter capacitor are needed to convert the high frequency AC to DC, in order to charge the power battery. Rectifier and the circuit after it are usually equivalent to a pure resistance load to design the system or control strategy [3,4]. A conventional way is using the coefficient $8/\pi^2$ to make an equivalent relationship between the rectifier input impedance and the system load resistance [5,6]. However, stray parameters and non-ideal behaviors of the devices will become obvious at the high frequency range [7]. Also, rectifier input impedance can be affected by the input inductance and other parameters. So, it will bring some deviations, if only considering WCS rectifier input impedance as a pure resistance.

Actually, rectifier input impedance of EV wireless charging system contains both resistance part and inductance part [7-9]. It can be expressed as a series of an equivalent resistance and an equivalent inductance [8,9]. Although there has not been an effective method to get the equivalent load impedance of WCS rectifier, some existing researches could be helpful. Based on the on and off states [10], the rectifier and its related inductance and capacitance circuits can be described by the state space model [11], considering the stray resistances...
and diode forward voltage drop [12]. Then, the expressions of the related voltages and currents have been obtained in the time domain, frequency domain, or complex frequency domain [13,14], which can be used for the analysis of WCS rectifier equivalent load impedance. Besides, non-linear switching functions and circuit simulations could also be adopted to study this issue [15]. The non-linear process of rectifier load will bring some difficulties to system compensation network design. As we know, compensation networks are very important to system performances [16], and can be designed to achieve maximum efficiency, maximum power, or conjugate matching [17,18]. In most cases, a pure resistance is used to express the rectifier load [19-21]. But the operation modes of WCS rectifier load will affect the working states of compensation network [22]. So, actual equivalent input impedance of WCS rectifier load should be considered, while designing the compensation networks.

Load estimation of WCS has faced the same problem. Effects of the rectifier load could complicate the equations used for load estimation [23], and lead to the increasing of calculation and control complexity. Hence, a pure resistance load is approximately used for most of the load estimation, detection, or optimal load tracking [24-26]. Another situation is that the voltages and currents are usually both measured for load estimation, in order to calculate the impedances in the primary side [24,27]. Since the voltage and current sensors or probes have different phase delays at the high frequency range, some deviations may be introduced into the estimation process. Also, the robustness of the estimation method is very important. It can be analyzed through parameter derivation, root locus, Nyquist curve, Bode graph, or directly calculating the results on conditions of parameter variations [28-30].

Based on the previous researches, an effective method to quantitatively analyze the equivalent load of WCS rectifier is put forward in the paper firstly. The equivalent load can be independently calculated through the parameters of the rectifier circuit, and the results are basically not affected by other WCS parts. Secondly, a compensation network design method is proposed considering the equivalent impedance of the rectifier load, especially the equivalent inductance. This method will further decouple the primary and secondary side design, to achieve four system performance indicators at the same time. Thirdly, the effects of the rectifier non-linear process are taken into count to estimate the system load resistance. The proposed primary side load estimation method only adopts high frequency voltages, does not need to measure the currents, and can avoid the phase delay deviations. Also, it does not require wireless communication between the primary and secondary sides.

II. RECTIFIER LOAD ANALYSIS AND CALCULATION

Full-bridge diode rectifier is the most commonly used topology in EV wireless charging system. Also, dual-side LCC compensation networks can provide several appropriate design degrees of freedom to achieve several system performance indicators at the same time. Moreover, it can be designed to make the system resonant frequency independent of the load condition [16,22]. So we discuss the rectifier load on the basis of this kind of topology.

Fig.1. EV wireless charging system with full-bridge diode rectifier and dual-side LCC compensation networks.

Fig.1 shows the EV wireless charging system with full-bridge diode rectifier and dual-side LCC compensation networks; where, U_{dc}, DC voltage source; the high frequency inverter is composed of G1-G4, and the full-bridge rectifier is composed of D1-D4; the primary side compensation network consists of L_p, C_{1p}, and C_{1s}; the secondary side compensation network consists of L_s, C_{2s}, and C_{2p}; L_1 and L_2 are self-inductances of the transmit coil and
receive coil; M is mutual-inductance between them; \(C_{in} \) and \(C_o \) are system input and output filter capacitors; \(R_L \) is system load resistor. It should be noticed that the WCS load is an EV power battery in the practical case, which behaves as a voltage source series with its parasitic resistance. But the power battery could be equivalent to a load resistance \(R_i \) [1, 19]; the value of this equivalent resistance can be calculated by the voltage on the power battery divided by the current flowing through it. Moreover, the full-bridge rectifier, its input inductor, output filter capacitor, and the load resistor are together defined as the rectifier circuit. Although the following analysis is conducted based on the specific system, it can be extended to applications on other rectifier and compensation network topologies.

Fig. 2 Flow chart of the proposed method used to calculate the rectifier equivalent load.

Fig. 3 suggests that the waveform of rectifier input current \(i_{rec} \) has some distortion, because of the effect of the rectifier input inductance. This makes the fundamental wave of \(i_{rec} \) lags behind the one of \(u_{rec} \). So, the rectifier input impedance does not just include resistance component, but also contains a certain inductance component. Moreover, Fig. 2 shows that the positive and negative half-cycles are symmetric for all the voltage and current waveforms. Hence, we just need to consider the positive half-cycle, and the negative half-cycle can be obtained from the symmetry. Fig. 3 shows the equivalent circuit of the rectifier circuit in the positive half cycle, considering the stray parameters and the diode forward voltage drop; where, \(u_{dio} \) represents the diode forward voltage drop; \(R_{dio} \) is diode conduction resistance; \(R_L \) and \(R_{Co} \) are stray resistances of \(L_s \) and \(C_o \), respectively; \(u_d \) and \(i_d \) are load voltage and current.

Based on the equivalent circuit, \(i_{rec} \) is defined as state variable \(x_1 \), and the voltage on \(C_o \) is defined as state variable \(x_2 \). \(u_s \) and \(u_{dio} \) are treated as the input variables, and \(u_{dis} \) treated as the output variable. So, state space equation of the rectifier circuit in the positive half cycle is given by (1a).

\[
\begin{bmatrix}
 x_1' \\
 x_2'
\end{bmatrix} = A \begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix} + B \begin{bmatrix}
 u_s \\
 u_{dio}
\end{bmatrix}, \quad y = C \begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}. \tag{1a}
\]

Where, impedance matrixes \(A, B, \) and \(C \) are given by (1b).
Then, the input variables and the initial values of the state variables are given by (2), according to the schematic waveforms in Fig.2; where, \(\omega \) is system angle frequency; the diode forward voltage drop is treated as a constant value \(V_{\text{dio}} \). Since only a few fluctuations exist on the voltage of \(C_o \) and the voltage drop on \(R_{\text{dio}} \) is very small, their influences can be ignored, and the initial value of \(x_2 \) can be approximately equivalent to a DC voltage variable \(V_d \). Also, an amplitude of \(u_s \) is defined as \(V_s \), and it will be affected by WCS parameters, such as source voltage, mutual-inductance, etc. But the amplitudes of \(u_{\text{rec}} \) and \(i_{\text{rec}} \) are proportional to \(V_s \). So, \(V_s \) can be treated as a known variable.

Furthermore, \(V_d \) and \(\theta_b \) should be calculated to solve the state space equation. On the WCS normal working conditions, the value of \(V_{\text{dio}} \) and the voltage drops on \(R_{\text{dio}} \) and \(R_{Ls} \) are much smaller than the ones of \(V_s \) and \(V_d \). So, the voltage on \(L_s \) is approximately equivalent to \(V_s \sin\theta-V_d \), and the expression of \(i_{\text{rec}} \) can be given by (3), according to the relationship between the voltage on an inductor and the current flowing through it.

\[
A = \begin{bmatrix}
\frac{1}{L_i} \left(R_{Li} + 2R_{Wi} \right) & \frac{R_{Li} R_{Wi}}{R_{Li} + R_{Wi}} \\
\frac{R_{Li}}{C_i (R_{Li} + R_{Wi})} & -\frac{1}{C_i (R_{Li} + R_{Wi})}
\end{bmatrix}, \\
B = \begin{bmatrix}
1/L_i - 2/L_s \\
0
\end{bmatrix}, \\
C = \begin{bmatrix}
\frac{R_{Li} R_{Wi}}{R_{Li} + R_{Wi}} & \frac{R_{Li}}{R_{Li} + R_{Wi}} - \frac{1}{R_{Li} + R_{Wi}}
\end{bmatrix}.
\tag{1b}
\]

\[
V_d = (2V_s \cos \theta_b) / \pi. \tag{4}
\]

Also, the DC load current \(I_d \) can be calculated by (5), which is the average value of \(i_d \) in the positive half cycle.

\[
I_d = \frac{1}{\pi \omega L_i} \int_{\theta_b}^{\theta_b + \pi} (V_s \sin \theta - V_d) d\theta = (V_s (2 \sin \theta_b + \pi \cos \theta_b) - \pi^2 V_d / 2) / \pi \omega L_i. \tag{5}
\]

Because \(I_d = V_d / R_L \), another relationship between \(V_d \) and \(\theta_b \) can be got and given by (6).

\[
V_d = V_s (2 \sin \theta_b + \pi \cos \theta_b) / (\pi (\omega L_i / R_L + \pi / 2)). \tag{6}
\]

Based on the two relationships between \(V_d \) and \(\theta_b \), they can be obtained from (4) and (6). The expression of \(\theta_b \) is given by (7), and the expression of \(V_d \) can also be got according to their relationships. Equation (7) indicates that the phase difference between \(u_s \) and \(u_{\text{rec}} \) (or \(i_{\text{rec}} \)) is mainly decided by \(L_s \) and \(R_{Ls} \), and approximately independent of other WCS parameters. Since amplitudes of \(u_{\text{rec}} \) and \(i_{\text{rec}} \) are basically proportional to the one of us as mentioned above, we can say that the other parts of WCS have little effect on the rectifier circuit, and the rectifier load can be decoupled to analyze its equivalent input impedance. It is should be noticed that the rectifier circuit seems to be equivalent to a pure resistance \(R_L \), according to (7). However, this equivalent relationship is only suitable for (7) when calculating the phase angle \(\theta_b \), and cannot be used for any other part in the rectifier load analysis.

\[
\theta_b = \arctan (\omega L_i / R_L). \tag{7}
\]

After getting \(V_d \) and \(\theta_b \), full response of the rectifier circuit in the positive half cycle can be calculated by (8); where, \(\Phi(t) \) is the characteristic matrix of rectifier circuit; the part before the plus sign is used for solving zero-input response, and the other part is used for solving zero-state response. On the basis of (8), time domain expressions of \(u_{\text{rec}} \) and \(i_{\text{rec}} \)
can be obtained, according to the symmetry of their waveforms.

\[
x(t) = \Phi(t)x(0) + \int_0^t \Phi(t)Bu(t-\tau) d\tau \\
= e^{\omega t} \left[V_j + \int_0^t e^{\omega \tau} B \left[V_j \sin(\omega(t-\tau)+\theta) \right] d\tau \right].
\]

(8)

Finally, the fundamental wave amplitudes and phase angles of \(u_{rec} \) and \(i_{rec} \) can be calculated through Fourier transform, and defined as \(U_{rec,fd} \), \(I_{rec,fd} \), \(\phi_{u,rec,fd} \), and \(\phi_{i,rec,fd} \). So, the equivalent input impedance of WCS rectifier load will be given by (9); where, \(R_e \) and \(L_e \) are series equivalent resistance and inductance of the rectifier load. Only fundamental wave is considered, because the power of the harmonics is much smaller than the one of the fundamental wave. But the harmonic input impedances can also be obtained from Fourier transform. Moreover, the calculation process suggests \(R_e \) and \(L_e \) will be affected by the parameters of the rectifier circuit. Hence, the robustness of this method towards parameter variation needs to be studied. But the theoretical methods, such as calculating the derivative and root locus, cannot provide a simple and clear way to analyze the robustness in this case, since it is related to some complex or non-linear operations. So, this issue will be discussed in Section V, based on the actual parameter values.

\[
R_e = \frac{(U_{rec,fd}/I_{rec,fd})\cos(\phi_{u,rec,fd}-\phi_{i,rec,fd})}{\omega_c} \\
L_e = \frac{(U_{rec,fd}/I_{rec,fd})\sin(\phi_{u,rec,fd}-\phi_{i,rec,fd})}{\omega_c}.
\]

(9)

To sum up, the above analysis suggests that the rectifier load equivalent impedance contains both resistance and inductance components. Also, the series equivalent resistance and inductance can be independently calculated through parameters of rectifier circuit, and the results are basically not affected by other WCS parameters. So, the rectifier load can be decoupled with other parts of WCS, and make system design easier.

III. COMPENSATION NETWORK DESIGN

Since the rectifier load has been decoupled with other parts of WCS, we are going to propose a compensation network design method, based on the rectifier load analysis and some existing researches [16-18]. Moreover, the proposed method will further decouple the primary and secondary side design, and make the WCS compensation network design simpler. As same as the rectifier load analysis, the dual-side LCC compensation networks are used here. The rectifier input inductance \(L_s \) should be big enough to keep the rectifier working in CCM state as mentioned above, so we will confirm it before the compensation network design. Also, the primary side compensation inductance \(L_p \) is assumed to be known, and only the four compensation capacitors are used in the design method in this section.

Fig. 4. Equivalent circuit of the system secondary side, considering rectifier load equivalent impedance.

Firstly, the secondary side is discussed, and its equivalent circuit is shown in Fig.4; where, the series equivalent resistance \(R_e \) and equivalent inductance \(L_e \) are used to express the rectifier load; \(R_2 \) is resistance of the receive coil. As shown in Fig.4, \(Z_{s1} \) is defined as the impedance after the secondary side series compensation capacitor \(C_2s \), and its expression is given by (10); where, \(R_e' = R_e + R_{Ls}; \ L_e' = L_e + L_s \); \(\text{re}(Z_{s1}) \) means the real part of \(Z_{s1} \); \(\text{im}(Z_{s1}) \) is the imaginary part of \(Z_{s1} \).

\[
\text{re}(Z_{s1}) = \frac{R_e'/((\omega C_{2p})^2)}{R_e'^2 + (\omega L_e' - 1/(\omega C_{2p}))^2},
\]

\[
\text{im}(Z_{s1}) = -\frac{R_e'^2/(\omega C_{2p}) + L_e'(\omega L_e' - 1/(\omega C_{2p}))/C_{2p}}{R_e'^2 + (\omega L_e' - 1/(\omega C_{2p}))^2}.
\]

(10)
So, expression of the efficiency η_c can be calculated and given by (11); where, η_c is the efficiency from inverter output to rectifier load impedance; R_1 is resistance of the transmit coil; $X_{se}=\text{im}(Z_{s1})+\omega L_2-1/(\omega C_{2s})$.

$$\eta_c = \frac{\text{re}(Z_{s1})\omega^2 M^2}{(\text{re}(Z_{s1})+R_2)e^{2}} + \left(\text{re}(Z_{s1})+R_2\right)^2 R_1 + R_1 X_{se}^2.$$

Equation (11) indicates that two conditions need to be met, for the sake of achieving maximum efficiency. One is $X_{se} = 0$ to minimize the denominator of η_c. The other is the load resistance of the receive coil is equal to the optimal load resistance R_{opt}, as given by (12); where, R_{opt} are obtained from the derivation of η_c, when $X_{se} = 0$.

$$\text{re}(Z_{s1}) = \frac{R_{opt}}{\omega L_1 + \omega L_2 - 1/(\omega C_{1s}) - 1/(\omega C_{1p})}.$$

On the basis of (10) and (12), the secondary side parallel compensation capacitor C_{2p} can be calculated and given by (13). According to the value of C_{2p} and the equation $X_{se} = 0$, the secondary side series compensation capacitor C_2 can also be solved. The above analysis suggests that the secondary side compensation capacitors can be designed independently of the primary side ones, and their design purpose is mainly to achieve maximum system efficiency.

$$C_{2p} = \frac{\omega L_1 + \omega^2 L_2 - (R_2^2 + \omega^2 L_2^2)(1 - R_1^2/R_{opt})}{\omega (R_2^2 + \omega^2 L_2^2)}.$$

Then, the primary side is studied, and its equivalent circuit is shown in Fig.5; where, u_{inv} is inverter output equivalent voltage source; RL_p is stray resistances of L_p; Res is the equivalent resistance of the secondary side, when C_{2s} and C_{2p} are well designed, and $Res = \omega M/2/(R_{opt}+R_2)$.

![Fig. 5. Equivalent circuit of the system primary side, when the secondary side is well designed.](image)

As shown in Fig.5, Z_{p1} is defined as the impedance after the primary side compensation inductor L_p, and its expression is given by (14); where, $X_{pe} = \omega L_1 - 1/(\omega C_{1s}) - 1/(\omega C_{1p})$; re$(Z_{p1})$ means the real part of Z_{p1}; im(Z_{p1}) is the imaginary part of Z_{p1}. Similar with the secondary side design, the primary side also contains two compensation capacitors with two degrees of freedom for design. So, two design targets could be added here. The first one is making the WCS output rated power. The corresponding target equation is given by (15); where, U_{inv} is the RMS value of u_{inv}; P_{or} is the rated WCS output power; η_r is the rated WCS efficiency.

$$U_{inv}^2 / \text{re}(Z_{p1}) = P_{or} / \eta_r.$$

The second design target is keeping the input impedance of the primary side compensation network containing a certain inductance, in order to realize the soft switching of the inverter. The corresponding target equation is given by (16); where, L_{soft} is the inductance needed for inverter soft switching.

$$\text{im}(Z_{p1}) / \omega + L_p = L_{soft}.$$

Through simultaneously solving (15) and (16), values of the primary side compensation
capacitors C1 and C1p can be obtained, which is not affected by the secondary side design process. Also, it should be noticed that sometimes there is no analytical solution for these equations. Numerical solution methods need to be used on this condition.

Finally, the primary and secondary side compensation networks have been decoupled for design. Also, four compensation capacitors with four degrees of freedom are designed by considering four system performance indicators, including achieving maximum efficiency, optimal load resistance, making WCS output rated power, and realizing the soft switching of the inverter. Besides, calculated values of the designed compensation capacitors require fine tuning in practice to get better results.

IV. LOAD ESTIMATION METHODS

The rectifier load analysis results can be used for system load estimation, which adopting the high frequency signals in WCS. The conventional load estimation methods are usually based on the pure resistance load, and also need the high frequency voltage and current at the same time [24,27]. The voltage and current sensors or probes will have different phase delays at the high frequency range, including the ones used in oscilloscopes and power analyzers. These different phase delays will lead to some deviations of the phase angle between the measured voltage and current, and affect the accuracy of the impedance calculation, especially when the phase angle is close to 90°.

In order to solve this problem, we propose a load estimation method based on the secondary side high frequency voltages. The specific process is as follows: firstly, the positive zero crossings of the rectifier input voltage (urec) and the voltage before rectifier input inductor (the voltage on C2p for LCC topology) are detected, in order to obtain the positive zero crossing times. Then, define the positive zero crossing time of the voltage before rectifier input inductor as tacs, and the following positive zero crossing time of the rectifier input voltage as tua. So, the load estimation expression is given by (17), according to the relationship shown in (7). Finally, since

$$R_{L_{\text{set1}}} = \frac{\omega L_s}{\tan(\omega (t_{\text{urs}} - t_{\text{acs}}))}. \quad (17)$$

The proposed secondary side load estimation method has considered the influence of the WCS rectifier load. Also, only high frequency voltages are used in this method; no current is adopted. Hence, it can avoid the deviations introduced by different phase delays between measured voltage and current. Besides, the proposed method only detects the positive zero crossing times, but does not need the voltage amplitudes or RMS values. This will bring some simplifications to the corresponding measurements and calculations.

However, the measured signals still need to be transmitted to the primary side by wireless communication in most cases, used for system optimization or control. In order to avoid the problems brought by wireless communication, we further put forward a load estimation method based on the primary side high frequency voltages. Here, the inverter output voltage (u_{inv}) and the voltage after inverter output inductor (the voltage on C1p for LCC topology) are adopted. Define the fundamental voltage transfer function between the inverter output voltage and the voltage after inverter output inductor as G_p, and the fundamental voltage transfer function between the voltage before rectifier input inductor and the rectifier input voltage as G_s. The phase angle of G_s will be θ_b as defined in Fig.2, which can be adopted for load estimation based on (7). So, we need to find a relationship between G_s and G_p, and then the measured primary side voltages can be used to calculate θ_b. To achieve this, some WCS parts can be treated as a two-port network [17,18]. Hence, the coupling coils and compensation capacitors are equivalent to a two-port network as shown in Fig.6.
According to Fig. 6, impedance parameters of the equivalent two-port network can be calculated and given by (18a).

\[Z_{11} = Z_{m1} \left(\frac{Z_{11} + Z_{21} + Z_{12} + Z_{22}}{Z_{m1} + Z_{m2}} - Z_{m1} \right) / \text{den}, \]

\[Z_{12} = Z_{21} = Z_{m1} Z_{m2} / \text{den}, \]

\[Z_{22} = Z_{m1} \left(\frac{Z_{12} + Z_{21} + Z_{11} + Z_{22}}{Z_{m1} + Z_{m2}} - Z_{m1} \right) / \text{den}. \]

Where, \(Z_{m1} = j \omega M \), and the denominator denis defined by (18b).

\[\text{den} = (Z_{11} + Z_{12} + Z_{11}) (Z_{22} + Z_{22} + Z_{22}) - Z_{m1}^2. \]

Then, the relationship between \(G_s \) and \(G_p \) can be got and given by (19a), based on the impedance parameters of the equivalent two-port network.

\[G_s = \left(n_1 G_p + n_2 \right) / \left(d_1 G_p + d_2 \right). \]

Where, the coefficients \(n_1, n_2, d_1, \) and \(d_2 \)are defined by (19b); where, \(Z_p = R_{Lp} + j \omega L_p \); \(Z_s = R_{Ls} + j \omega L_s \).

\[n_1 = Z_{11} Z_{22} - Z_{12} Z_{21}, \]

\[n_2 = Z_{22} Z_{11} - Z_{12} Z_{21} \]

\[d_1 = Z_{22} Z_{11} - Z_{12} Z_{21}, \]

\[d_2 = Z_{11} Z_{22} - Z_{12} Z_{21}. \]

Furthermore, the amplitudes and phase angles of the selected voltages will be measured in the primary side, and then the transfer function \(G_p \) can be obtained. Define the amplitude of \(G_p \) as \(\text{Amp} \), and the phase angle of \(G_p \) as \(\text{Php} \). So, \(\theta_n \), which is the phase angle of the numerator of \(G_s \), can be calculated, as well as \(\theta_d \), which is the phase angle of the denominator of \(G_s \). Their expressions are given by (20).

\[\theta_n = \arctan \left(\frac{\text{Amp} \cdot \text{amn1} \cdot \sin(\text{Php} + \text{phn1}) + \text{inn2}}{\text{Amp} \cdot \text{amn1} \cdot \cos(\text{Php} + \text{phn1}) + \text{ren2}} \right). \]

\[\theta_d = \arctan \left(\frac{\text{Amp} \cdot \text{amd1} \cdot \sin(\text{Php} + \text{phd1}) + \text{imd2}}{\text{Amp} \cdot \text{amd1} \cdot \cos(\text{Php} + \text{phd1}) + \text{red2}} \right). \]

Where, \(\text{amn1} \) and \(\text{phn1} \) are the amplitude and phase angle of \(n_1 \); \(\text{amd1} \) and \(\text{phd1} \) are the amplitude and phase angle of \(d_1 \); \(\text{ren2} \) and \(\text{inn2} \) are the real and imaginary parts of \(n_2 \); \(\text{red2} \) and \(\text{imd2} \) are the real and imaginary parts of \(d_2 \); they can be calculated through (18) and (19), according to the measured values of the WCS parameters.

Finally, we can get the phase angle of \(G_s \), and the estimated load \(R_{L, \text{Pesti}} \) can be calculated through (21). Moreover, the derivation process suggests that \(R_{L, \text{Pesti}} \) will be affected by WCS parameters, such as mutual-inductance \(M \), compensation capacitances \(C_1s, C_1p, C_2s, C_2p \), and so on. Hence, the robustness of the estimation methods needs to be studied, when these parameters vary. But similar with the case of the rectifier equivalent load calculation method in Section II, the theoretical methods cannot provide a simple and clear way to analyze the robustness. So, this issue will be also discussed in Section V, based on the actual parameter values.

\[R_{L, \text{Pesti}} = \omega L_{L_s} / \tan(\theta_n - \theta_d). \]

Developed from the above secondary side load estimation method, the proposed primary side load estimation method has also considered the influence of the rectifier load. Meanwhile, it only adopts high frequency voltages, and can avoid the phase delay deviations, too. The difference is this method needs to measure voltage amplitudes. But on the other side, it does not require wireless communication between the primary and secondary sides. So, it has some advantages in EV applications.
ANFIS Controller

In this section basics of ANFIS and development of ANFIS controller are given. ANFIS uses the neural network’s ability to classify data and find patterns. It then develops a fuzzy expert system that is more transparent to the user and also less likely to produce memorization error than a neural network. ANFIS keeps the advantages of a fuzzy expert system, while removing (or at least reducing) the need for an expert. The problem with ANFIS design is that large amounts of training data require developing an accurate system. The ANFIS, first introduced by Jang in 1993, is a universal approximator and, as such, is capable of approximating any real continuous function on a compact set to any degree of accuracy. ANFIS is a method for tuning an existing rule base with a learning algorithm based on a collection of training data. This allows the rule base to adapt. As a simple example, a fuzzy inference system with two inputs x and y and one output z is assumed. The first-order Sugeno fuzzy model, a typical rule set with two fuzzy If–Then rules can be expressed as

Rule 1: If x is A1 and y is B1, then f1=p1x+q1y+r1
Rule 2: If x is A2 and y is B2, then f2=p2x+q2y+r2

The resulting Sugeno fuzzy reasoning system is shown here, the output z is the weighted average of the individual rules outputs and is itself a crisp value

Layer 1:
If the firing strengths of the rules are w1 and w2 , respectively, for the particular values of the inputs Ai and integral of Bi, then the output computed as weighted average,

Layer 2: Every node in layer 2 is a fixed node, whose output is the product of all incoming signals. Wi = μAi(x) μBi(y), i=1,2

Layer 3: This layer normalizes each input with respect to the others (The I th node output is the I th input divided the sum of all the other inputs).

Layer 4: This layer’s I th node output is a linear function of the third layer’s I th node output and the ANFIS input signals.

Layer 5: This layer sums all the incoming signals.
(a) Rectifier input voltage and current waveforms.

(b) Calculated fundamental waves.

Fig. 10. Experimental results of rectifier input voltage and current, as well as their fundamental waves, based on the standard parameter values

(a) Measured voltages used for secondary side load estimation

(b) Measured voltages used for primary side load estimation.

Fig. 11. Experimental results of the system voltages used for load estimations based on the standard parameter values

FIG: 9 Simulation results of Le effects on output power and efficiency.

CONCLUSION

This paper presents a systematic analysis of the rectifier load used for EV wireless charging system. The rectifier load model has been established to calculate its equivalent input impedance, which contains both resistance and inductance components, and can be independently calculated through the parameters of the rectifier circuit. Based on the rectifier load analysis, a compensation network design method is proposed to achieve the decoupling design of the primary and secondary side compensation capacitors. Furthermore, a secondary side load estimation method and a primary side load estimation method are put forward, considering the influence of the rectifier load. They adopt only
measured voltages to avoid the deviations introduced by different phase delays between measured voltage and current. Finally, the established model, the proposed rectifier load calculation method, compensation network design method, secondary and primary side load estimation methods have been verified, based on the developed EV wireless charging prototype. Although the works in this paper are conducted based on the specific system, they can be extended to more applications, such as wireless charging systems with other rectifier or compensation network topologies, etc. They will be helpful for system design and control to make EV wireless charging systems achieve stable operation and high performance.

The ANFIS method presented in this paper shows a good potential to model complex, nonlinear and multivariate problems. Considering the complexity of the relationship between the input and the output, results obtained are very accurate and encouraging. It may be noted that a trial and error procedure has to be performed for ANN model to develop the best network structure, while such a procedure is not required in developing an ANFIS model. Observations made from comparing the results are backed by the fact that results from ANN are largely dependent on architecture of the network, which is very hard to select as it is a complex and time-consuming task. Another limitation that ANN has its inadequate ability to deal with fuzzy and nonlinear data, whereas ANFIS is largely free from both of those limitations. Furthermore, computationally the ANFIS model is more easy and efficient than the ANN model. So the results suggest that the ANFIS method is superior to the ANN method.

REFERENCES

Student Details:

Name: **D. Anna Mani**

Miss D. Anna Mani was graduated from NRIIT, Agiripalli, affiliated to Jawaharlal Nehru Technological University, Kakinada. Her special fields of interest include wireless power transfer theory, optimization and control of electric vehicle wireless charging system and bi-directional wireless charging system. Currently she is studying M.Tech in NRI Institute of Engineering, Agiripalli.

Faculty Details:

Name: **Dr. N. Sambasiva Rao**

Dr. N. Sambasiva Rao received the B.Tech degree in Electrical & Electronics Engineering and M. Tech in Electrical Power Engineering from JNTU Hyderabad, India and Ph.D degree from prestigious JNTU Hyderabad India. He has 15 years experience in teaching. He published a 26 research papers in various International Journals and 5 research papers in International ,National Conferences. He got BEST TEACHER AWARD BY JNTU KAKINADA IN THE YEAR 2014. He is the Member of International Association of Engineers (IAENG) and Life member of ISTE. He is currently working as Professor and Head of the department in Electrical & Electronics Engineering at NRI Institute of Technology, Agiripalli, India. He got “Best Achiever award of Andhra Pradesh “By NCERT, New Delhi, India. His Areas of interest include Electrical Machines, FACTS and power System Deregulation.