INTELLIGENT IMPLEMENTATION GREEN COMMUNICATION TECHNOLOGY LED ENERGY SAVING SCHEME BASED ON OFDMA-BASED MULTICARRIER BASE STATIONS

FOUZIYA YASMEEN (M.tech) 1
BADAVATH RAVIKUMAR Assistant professor M.tech2
Dr. B. R. Vikram, Principal, M.E., PhD, LMISTE, MIEEE3

Vijay Rural Engineering College, Nizamabad, TS, 503003, INDIA
foushaiekh424@gmail.com4

Abstract---As mobile data traffic levels have increased exponentially, resulting in rising energy costs in recent years, the demand for and development of green communication technologies has resulted in various energy-saving designs for cellular systems. At the same time, recent technological advances have allowed multiple component carriers (CCs) to be simultaneously utilized in a base station (BS), a development that has made the energy consumption of BSs a matter of increasing concern. Digital signal processing came long way from wire-based optical fiber communication to wireless-based high rate supported communication models. Radio waves supported long distance satellites, radars to microwave supported mobiles has changed in terms of technology and data rate in last two decades. Mobile communication has become part of daily life and mobile usage has witness immense growth results in high energy consumption which remains concerned area in resource management. Green communication technology is proposed in this paper for effectively controlling the data rate and power consumption to save the energy. The problem of energy minimization at BS transceivers subject to certain quality-of-service and fairness requirements for all users is addressed in this work based on communication activities in downlink transmissions of the BS with orthogonal frequency-division multiple access-based multi CCs are considered. Experimental results reveal that proposed method yields better results than traditional algorithms.

Keywords: Component carrier, Energy saving, Green communication technology, OFDMA

1. INTRODUCTION

It is well known that there is unmanageable growth of users in Tele-communication industry. So user’s requirements become high for ubiquitous access, high data rate. Therefore, energy consumption in wireless communication has been increasing. As a result, CO2 is emitted which makes the atmosphere polluted and become an obstacle in development of wireless communication. According to Survey, ITU has submitted that the ICT industry produces 2% - 2.5% of total greenhouse gas emission. That includes PC 40%, data centers 23%, telecommunication 24% and printers 6%. So, out of all we are concentrating on telecommunication to reduce emission of CO2. So to overcome this emission in telecommunication, energy efficient has become a global trend in future wireless telecommunication networks.

The Third Generation Partition Program (3GPP) Long Term Evolution (LTE) is the most advanced technique for next generation cellular systems. To satisfy user we need to provide high speed data, significant spectral efficiency etc. To do this high amount of energy is used hence 3GPP has integrated Green communication in LTE standards. The base paper explains the energy efficiency in LTE systems by using MIMO, OFDMA, Resource Block (RB) and Sub-Channel assignment are used. In this scheme for individual user they have allocated each RB by
Appling resource allocation algorithm. Hence there is a limited use of RB to the user where it can sustain at less number of user i.e. in low traffic load cases it gives an energy efficiency and good QoS where’s in High load case no QoS and energy efficiency is present. In future wireless telecommunication industry, the will be huge development of Mobile user (MU). So we need energy efficient algorithm in the LTE network.

To improve the energy efficiency in LTE cellular systems Radio access network should be considered as the foremost. So far most existing scheme have focused on energy efficient algorithm. In that some schemes have been investigated here. Energy efficient algorithm scheme for allocating sub-carrier to the users shows water filling packet scheduling algorithm and shows that Resource Blocks is allocated to the users by resource scheduling. Energy efficient power allocation algorithm for wireless channel with no QoS guarantees. Opportunistic RB allocation algorithm for LTE uplink network has less connectivity. Novel layered dynamic resource allocation algorithm for spectrum sharing made high usage of spectrum. QoS aware energy efficient resource allocation algorithm for energy efficient in LTE made RB allocated to user which finds it work in low network load case and no QoS guarantee. In this paper resource and energy allocation algorithm has been implemented where it gets QoS and traffic load cases but not implemented in LTE networks. The resource allocation problem to QoS requirements of M2M and H2H users energy efficient resource allocation in uplink LTE networks under statistical QoS provisioning the dual problem.

This paper focuses on the downlink transmission and supports both the real-time (RT) and the non real-time (NRT) traffics simultaneously. Motivated by the practical need to more reasonable energy-saving designs in this area, a novel green scheme based on the rate-and-power control design is therefore proposed for efficiently solving the considered problem. The presented scheme also includes necessary scheduling and call admission control mechanisms. Simulation results demonstrate that the energy consumption performance of the proposed novel energy-saving scheme is much better than that of existing schemes, while still maintaining the acceptable level for users’ requirements.

2. BACKGROUND

(A) Radio Resource Allocation

Radio resources in LTE are apportioned into the time/frequency domain [3]. Along the time domain they are assigned every Transmission Time Interval (TTI). TTI has been reduced to 1ms in LTE in order to support low latency data transfer. The time is divided in frames. Each 10ms Frame is divided into ten 1ms sub-frames i.e. TTIs, with each subframe further divided into two 0.5ms Slots. Each slot consists of 7 OFDM symbols with normal cyclic prefix. In the frequency domain, instead, the total bandwidth is divided in sub-channels of 180 kHz, each one with 12 consecutive and equally spaced OFDM sub-carriers. Resource Block (RB) which is formed by the intersection between a sub-channel in frequency domain and one TTI in time domain is the smallest allocable resource unit.

(B) Green Wireless Communication

Over the last decade, wireless and mobile communications have enjoyed widespread popularity and usage because of their access flexibility and ability for providing high data rate traffic with adequate decoding quality. Since 2006, data traffic on mobile networks has been increasing at a rate of approximately 300% and it is expected to grow even at much faster rate. This growth is expected to demand much higher energy consumption than today’s level. The current technical and environmental challenges are how to design future mobile radio networks to be more energy efficient and to accommodate the extra traffic while maintaining the quality of service. Specifically, the increase rate in transmitted data volume at the current predicted level corresponds to an increase of the associated energy consumption by approximately 20% per year. Currently, 3% of the world-wide energy production is consumed by the information and communication technology infrastructure, which causes about 2% of the world-wide CO2 emissions. In addition, future wireless radio systems face another challenge to globally reduce the
electromagnetic radiation levels to permit satisfactory operation of time and spectrum shared wireless systems with reduced interference as well as a reduced human exposure to harmful radiations.

(C) OFDMA

Orthogonal Frequency Division Multiple Access (OFDMA) is a multi-access version of the Orthogonal Frequency Division Multiplexing (OFDM). The principle of an OFDM system is to use narrow, mutually orthogonal subcarriers on certain frequency to carry data, and OFDMA is achieved by assigning different subcarriers to carry data from/to different users. It means that the total channel bandwidth is divided into sub channels with subcarriers and each subcarrier is modulated with a lower data rate. Then these lower data rate streams are transmitted simultaneously through the subcarriers, which results in achieving high-speed data transmission.

OFDMA can utilize the advantages of OFDM to enable multipath mitigation and interference cancelation and combat against channel fading effect. However, in OFDMA based networks, narrowband transmission on different orthogonal subcarriers is used which means that there will be a large number of subcarriers which need to be carefully assigned and scheduled during transmission. This calls for the design of flexible subcarrier allocation where OFDMA can select certain subcarriers for dedicated transmission according to channel conditions or users’ demands so that dynamic frequency allocation can be achieved.

3. PROPOSED METHOD

(A) Admission Control Mechanism

The considered framework model is adroitly appeared in Fig. 1. The session-level transmission is expected in the model. Expect that the greatest number of sessions that every CC can suit is consistent indicated as S. At the point when a session demand arrives, the classifier in the framework will first group it into either RT or NRT session, and after that it will be sent to the booking line. Next, the confirmation control component is proposed to be utilized to figure out if to obstruct the session demand in the booking line and further which CC ought to be relegated to the session in the event that it is permitted to access the system.

(B) Affirmation Control Mechanism

To begin with characterize \((m,j)_{RB}\) as the RB on the m th time space and the jth subchannel. At that point characterize the perfect transmission rate of the \((m,j)_{RB}\) on CC k for supporting client session n as \(r_{m,j,n}^{(k)}\). Based on \(r_{m,j,n}^{(k)}\) can be given as

\[
r_{m,j,n}^{(k)} = \beta \log_2 \left(1 + \frac{K P_{m,j}^{(k)} | H_{j,n}^{(k)} |^2}{\beta N_0} \right) \quad (1)
\]

Note in (1) that is the channel pick up between subchannel \(N_0\) is the commotion power unearthly thickness, j and client session n on CC k, \(\beta = 12 \cdot 15000\) is the data transmission in Hz for a RB, since...
one subchannel incorporates 12 subcarriers what’s more, each subcarrier is characterized to have 15 000 Hz, $K = -1.5 \log(5B E R)$, where BER is the wanted (steady) piece blunder rate, and $P_{m,j}^{(k)}$ is the required transmission energy to accomplish $r_{m,j,n}^{(k)}$ under the plan structure in (1). In light of (1), the transmission force of $(m,j)_{RB}$ on CC k can be given as

$$P_{m,j}^{(k)} = \frac{\beta N_0}{K} \left(\frac{r_{m,j,n}^{(k)}}{2^f - 1} \right)$$

(2)

In like manner, the aggregate vitality utilization in this considered in the subframe on CC k indicated as E_k is given to be

$$E_k = \frac{t_{Sub, frame}}{2} \sum_{(m,j)_{RB} \in \Omega_k} P_{m,j}^{(k)}$$

(3)

![Flow chart of the admission control mechanism](image)

Figure 2: Flow chart of the admission control mechanism

SCC regardless of the possibility that the SCC is still dynamic and the new session can just utilize PCC if $N_1 < S$, where N_k speaks to the number of client sessions in the framework on CC k. In the other case, in the event that $PreOnFlag==0$, the new session can’t get to the

Where $t_{Sub, frame}$ edge is the length of each sub frame in seconds furthermore, Ω_k is the arrangement of all RBs in each subframe of CC k.

At the point when another session arrives, the system will in the first place do the vitality check by looking at E_k and ρE_{max} where E_{max} implies the most extreme accessible vitality in each subframe also, ρ is the upper negligible element. In the event that permitted, the component will facilitate check the SCC status to recognize if the SCC can be utilized. Notice that the $PreOnFlag$ is a pointer speaking to whether the new client session can get to the SCC. To be more point of interest, if $PreOnFlag==0$, the new session can’t get to the

Incoming Session

- $E_k < \rho E_{max}$
 - $PreOnFlag==0$
 - $k^* = \arg \min_k E_k$
 - $N_k < S$
 - $N_k < S$
 - Assign the session to CC k^*
 - Bandwidth OK($E_k < E_{max}$)
 - $k^* = \arg \min_k E_k$
 - Assign the session to CC k^*
 - Block the session
 - $N_k > S$
 - $N_k > S$
 - Block the session
 - Bandwidth OK($E_k < E_{max}$)
 - $k^* = \arg \min_k E_k$
 - Assign the session to CC k^*
 - Block the session
instrument will check whether $N_k < S$. On the off chance that yes, CC k^* will be doled out to the new session; something else, the instrument will promote check whether $N_k < S$ furthermore, $E_k < E_{\text{max}}$ to figure out whether the new session can get to CC k. Notice that the operation and count of the system is executed toward the start of each subframe.

(C) Objective of the Novel Energy-Saving Transmission

Scheme In view of the considered framework demonstrate, the aggregate vitality utilization in each subframe at the BS handsets is pointed to be minimized, while keeping up the blocking likelihood of all client sessions, the base required information rates for every kind of clients, and the reasonableness among all clients in an satisfactory level. To productively and adequately accomplish the above objective, a novel vitality sparing plan, which incorporates an asset booking calculation in Section III and a CC initiation calculation in Section IV, is proposed.

(D) Resource Scheduling Algorithm

The introduced asset booking calculation incorporates two calculations that are independently proposed for the operation as takes after: 1) vitality versatile rate control calculation (EARCA) also, 2) radio asset designation calculation (RRAA). The RRAA calculation is further isolated into two sub algorithms named B.1) data transfer capacity task calculation (BAA) and B.2) asset piece designation calculation (RBAA), separately. EARCA is intended to powerfully alter the NRT client's allotted limit in view of his/her way misfortune criticism and the current utilized vitality. After the NRT client's information rate is set, BAA decides what number of RBs ought to be doled out to each client session, while RBAA is utilized to encourage decide the set of RBs for those sessions.

(E) Radio Resource Allocation Algorithm (RRAA)

RRAA is outlined on the premise of the asset allotment approach utilized, for its computational multifaceted nature advantage. Pseudo codes for the point by point operation are composed in Figs. 5 and 6, separately. In every choice age of each subframe, the BAA subalgorithm in Fig. 5 will be executed first. Every single remote client will criticism their channel additions to the BS so that found the middle value of squared channel increases can be computed as information contentions. Likewise, the quantity of required RBs for all the client sessions will be set to 0 at first. After instatement, all the client sessions will be distributed 1 RB to begin with, to ensure least information rate prerequisites. Next, the rest of the RBs will be assigned as indicated by the distribution metric. It plans to apportion the RB to the client who can best advantage in term of the vitality utilization diminish in the wake of getting the RB, and the quantity of required RBs for the chose client will be included 1 after the allotment. After the execution of BAA, the RBAA subalgorithm in Fig. 6 will in this manner be executed.

```
If((E_k > γ E_{max}) \| (E_k < ρ E_{max}))
  if((E_k > γ E_{max}) && (level < 2))
    level=level+1;
  else if ((E_k < γ E_{max}) && (level > 0))
    level=level-1;
end
NRT users
  Set their capacities according to the level ;
end
```

Figure 3: Pseudo code of EARCA

In RBAAs, channel picks up and the quantity of each client session' required RBs are utilized as info contentions. For every RB, the subalgorithm means to discover the client who has the biggest channel pick up among all the clients. In the wake of finding the client, check whether the quantity of the current allotted RBs of the client equivalents to the quantity of its required RBs. In the event that yes, set the channel increase of the client approach to 0, and discover another client whose channel increase is the biggest among every one of the clients till the while
circle is over. After the while circle, designate the RB to the client session picked amid this run. Once the two subalgorithms are done in grouping, each client session's accessible RBs are resolved. Next, the craved information rate of every client session will be circulated similarly over its designated RBs, and the vitality for every RB is thusly decided.

(F) COMPONENT CARRIER ACTIVATION ALGORITHM

The CC initiation calculation is to decide the useful utilization of the SCC as indicated by the fluctuating system activity burden to really moderate the primary vitality utilization of the BS. In particular, let p be the blocking likelihood of the framework, which is characterized as the proportion of the quantity of client sessions being obstructed to add up to arriving client sessions. Likewise, characterize $p_{th}, N_{th1},$ and N_{th2} as edges used to distinguish when to turn on what's more, kill the SCC, separately. The OnFlag is a marker speaking to whether the SCC has been killed.

\[
\frac{I}{|H_{j,n}^{(k)}|}: \text{the average squared channel gain across all } j \text{ sub channels for user session } n \text{ on CC } K, \\
\forall \text{ users } \in CC_k
\]

Allocate each user session 1 RB;

While ($\sum_{n=1}^{N_k} m_n^{(k)} < 2j$)

For $n=1: N_k$

Calculate the allocation metric expressed as

\[
G_{n}^{(k)} = \frac{pN_0}{k |H_{j,n}^{(k)}|} \left[(m_n^{(k)} + 1) \cdot 2^{|m_n^{(k)}|} - m_n^{(k)} \right] + \frac{r_n^{(k)}}{2^{|m_n^{(k)}|}};
\]

End

\[
n^* = \arg \min_n G_{n}^{(k)};
\]

\[
m_{n^*}^{(k)} = m_{n^*}^{(k)} + 1;
\]

End

\[\frac{|S_{n}^{(k)}|^2}{N_{th2} K} \text{: the set of current allocated RBs for user session } n \text{ on CC } K/\]

For each $(m,j)_{RB}$

\[
n^* = \arg \max_n |H_{j,n}^{(k)}|^2 ;
\]

While ($|S_{n}^{(k)}| = m_{n^*}^{(k)}$)

\[
|H_{j,n}^{(k)}|^2 = 0;
\]

End

\[
S_{n^*}^{(k)} = S_{n^*}^{(k)} \cup \{(m,j)_{RB}\}
\]

End

4. RESULTS

\[\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig4}
\caption{Pseudo code of BAA}
\end{figure}\]

\[\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig5}
\caption{Pseudo code of RBAA}
\end{figure}\]

\[\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig6}
\caption{Illustration of the reduction ratio as a function of the channel gain being used to determine the allocating capacity for the NRT users}
\end{figure}\]
5. CONCLUSION

In this paper, a novel energy-saving downlink transmission scheme in OFDMA-based multi-CC network systems was successfully proposed. The proposed scheme could allocate the radio resource with an adaptively rate-and-power control to users and support an acceptable level of the QoS and the fairness at the same time. Compared with the currently existing works, the proposed one had the great advantage of flexibility to activate/deactivate the SCC according to the dynamically fluctuating traffic load to effectively avoid unnecessary energy consumption.
REFERENCES

FOUZIYA YASMEEN received the bachelor of engineering in electronics and communication engineering from Kakatiya Institute Of Technology And Science For Women, Nizamabad, Telangana, India in 2013. At present she is pursuing her Post-Graduation (M.tech) Vijay Rural Engineering college specialized in ECE. Her research interests include Analog communications, Image processing, advanced digital communications and Electronic circuits.

Badavath Ravikumar has completed graduation (B.tech.) in Electronics and Communication Engineering (ECE) from Vijay Rural Engineering College affiliated to JNTU (HYD) and M.Tech. degree in Very Large Scale Integrated Circuit Engineering (VLSI & DESIGN) from Gokaraju Rangaraju Institute of Engineering and Technology, Bachupally, Kukatpally, Hyderabad, Telangana, India in 2013. He is a Assistant Professor with the Department of Electronics and Communication Engineering at Vijay Rural Engineering college He has 4 years of teaching experience. His research interests are in Digital Signal Processing, Embedded System and VLSI Design.